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Abstract
Since neural classifiers are known to be sensitive
to adversarial perturbations that alter their accu-
racy, certification methods have been developed to
provide provable guarantees on the insensitivity of
their predictions to such perturbations. However,
in safety-critical applications, the frequentist in-
terpretation of the confidence of a classifier (also
known as model calibration) can be of utmost im-
portance. This property can be measured via the
Brier Score or the Expected Calibration Error. We
show that attacks can significantly harm calibra-
tion, and thus propose certified calibration pro-
viding worst-case bounds on calibration under ad-
versarial perturbations. Specifically, we produce
analytic bounds for the Brier score and approxi-
mate bounds via the solution of a mixed-integer
program on the Expected Calibration Error.

1. Introduction
Deep neural networks have shown remarkable performance
in computer vision tasks such as image classification. How-
ever, the black-box nature of neural networks and the un-
reliability of their predictions under several forms of data
shift complicates their deployment in safety critical appli-
cations (Abdar et al., 2021; Linardatos et al., 2021). It is
well known that neural network classifiers are very sensitive
to perturbations γ on image x that are small enough to be
imperceptible to the human eye, yet x+ γ yields a different
prediction than x (Goodfellow et al., 2015; Szegedy et al.,
2016). This problem has been well studied in recent years
with the goal of improving adversarial robustness. While a
variety of methods has been proposed to improve the em-
pirical robustness of neural networks, certification methods
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Figure 1: In this diagram, we demonstrate the goal of our
work: We translate certificates on the predictive confidences
into certificates on the calibration error. Each box on the
left represents one prediction from a certified model, correct
ones in blue, incorrect ones in orange. The certificates on
the confidence, are represented by each box’s boundaries.

have recently gained traction, since they provide provable
guarantees on the invariance of predictions under adver-
sarial attacks (Cohen et al., 2019). Following these works,
Kumar et al. (2020) have extended the notion of certification
from the predicted label to the predictive confidence of the
classifier (that, for the scope of this paper, is measured as
the maximum softmax output).

While these certificates provide bounds on the confidence of
the certified model as a function of the perturbation applied
to each individual input, they do not inform us about the
average mismatch between accuracy and confidence. The
reliability of a classifier in these regards is generally quan-
tified through both the Expected Calibration Error (ECE)
(Naeini et al., 2015) and the Brier Score (BS) (Brier, 1950;
Bröcker, 2009). Both describe the calibration of confidences
across a set of predictions. We argue these metrics can play a
strategic role in applications that leverage confidence scores
in their decision-making process. For instance, one might
utilise reliable confidence scores in medical diagnostics to
decide whether to trust the machine learning classifier out-
put without further human intervention or whether to defer
the decision to a human expert. However, we empirically
show it is possible to produce adversaries that severely im-
pact the reliability of confidence scores while leaving the
accuracy unchanged, even when the classifier is explicitly
trained to be robust to adversarial attacks on the accuracy.
This degradation in confidence reliability is clearly signaled
by the ECE.
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For this reason, we propose the Certified Calibration Error
(CCE) and Certified Brier Scores (CBS) to provide guaran-
tees on the calibration of certified models under adversarial
attacks. The CCE and CBS are set-level metrics providing
worst-case bounds as set-level certificates. While certifi-
cation of individual predictions enables guarantees on the
accuracy of a classifier under adversaries, the additional
certificates on the confidences enable worst-case bounds on
the reliability of confidence scores as represented by the
CCE and CBS (see Figure 1).

Our contributions are the following:

• We describe practical motivations to attack calibration
metrics. Further, we demonstrate various attacks that
severely impact them while remaining unnoticed when
solely measuring the robust model accuracy.

• We introduce certified calibration quantified through
the certified Brier score (CBS) and the certified cal-
ibration error (CCE). For the former, we present a
closed-form bound as certificate. For the latter, we
interpret the CCE as the solution of a mixed-integer
non-linear program and propose an effective numer-
ical optimisation framework to estimate it, i.e. the
approximate certified calibration error (ACCE).

2. Confidence Calibration
We first introduce notation and formalize calibration, before
explaining how attacks on confidence scores and reliability
metrics may be beneficial to an attacker and showing such
attacks are realisable (2.2).

2.1. Quantifying the Confidence-Accuracy Mismatch

LetD = {xn, yn}Nn=1 be a dataset of size N with xn ∈ RD,
yn ∈ Y = {1, 2, ...,K}, and f : RD → ∆K be a neural
network, where ∆K is a probability simplex over K classes.
We denote the kth component of f as fk. We further, define
F : RD → Y to be hard classifier predicting a class la-
bel, usually obtained by F (x) := argmaxk∈Y fk(x). This
prediction is done with the confidence provided by the soft
classifier z : RD → [0, 1], obtained through maxk∈Y fk(x).
With slight abuse of notation, we refer to functions and their
outputs simultaneously, i.e. z ∈ [0, 1] is a output of z(x).

Expected Calibration Error

For classification tasks, calibration describes a match be-
tween the model’s confidence and its empirical performance
(DeGroot & Fienberg, 1983; Naeini et al., 2015). A well-
calibrated model predicts with confidence z when the frac-
tion of correct predictions is exactly z, i.e. P(F = y|Z =
z) = z. This enables us to interpret z as a probability in the
frequentist sense. We formally state:

ECE = EZ [|P(F = y|Z = z)− z|] , (1)

which is the expected difference between confidence and
accuracy over the distribution of Z.

Several estimators for (1) have been proposed. A typical
approach is to discretize the empirical distribution over Z
through binning (Guo et al., 2017). For each bin Bm, the
average confidence is compared with the accuracy:

ˆECE =

M∑
m=1

|Bm|
N

∣∣∣∣∣ 1

|Bm|
∑

n∈Bm

cn −
1

|Bm|
∑

n∈Bm

zn

∣∣∣∣∣ (2)

where cn = I{Fn = yn} and I{x} is the indicator func-
tion, that is 1 if x, and 0 otherwise. Multiple variants of
the calibration error and its estimators exist (Kumar et al.,
2019). As commonly done in literature, in this paper we will
focus on top label calibration that ignores the calibration
of confidences of lower ranked predictions. When using
an equal-width binning scheme for the estimator in (2) we
will refer to it as ECE and when using an equal-count bin-
ning scheme we will refer to it as AdaECE (Nguyen &
O’Connor, 2015; Nixon et al., 2019).

Brier Score Accuracy and calibration represent different
concepts and one may not infer model accuracy from calibra-
tion unambiguously, or vice versa (see Appendix A.1). The
two concepts are unified under proper scoring rules, such as
the Brier Score (BS) (Brier, 1950), which is commonly used
in the calibration literature. It has been shown that these met-
rics can be decomposed into a calibration and a refinement
term (Murphy, 1972; 1973; Bröcker, 2009). An optimal
score can only be achieved by predicting accurately and with
appropriate confidence. The Brier is mathematically defined
as the mean squared error between the confidence vector f
and a one-hot encoded label vector. Here, we will focus on
the top-label Brier score TLBS = N−1∥c− z∥22, which is
the mean squared error between the confidences z ∈ [0, 1]N

and the correctness of each prediction c ∈ {0, 1}N .

2.2. Calibration under Attack

Motivation Practitioners often rely on confidence scores for
decision making processes with the assumption that confi-
dence scores can be interpreted as frequentist probabilities.
Therefore, we argue it is important to certify calibration by
providing worst-case bounds to its variation under adver-
sarial perturbations. Indeed, machine learning systems de-
ployed in safety critical applications are monitored regularly
for their predictive performance and for their calibration.
When abnormalities in the system are detected, the model
might be pulled from deployment for further investigation.
Often, this results in major operational cost, as the model
might be replaced with less precise but more robust models,
human labour, or pulled without replacement while being
vital element of the revenue stream. To this end, an attacker
might coordinate a denial-of-service attack.
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Table 1: AdaECE↓ (%) when performing our (η, ω)-ACE
attacks compared to the case in which the attack is not
performed for PreAct-ResNet18 and ResNet50 on CIFAR-
10 and ImageNet for both Empirical Risk Minimization
(ERM) and Adversarial Risk Minimization (ARM)

CIFAR 10 ImageNet

ERM

Unattacked: 3.06 3.70
η ω ϵ = 8/255 ϵ = 2/255 ϵ = 3/255
−1 y 2.49 1.06 10.62
+1 y 18.79 47.23 46.92
−1 ŷ 5.19 23.72 23.73
+1 ŷ 11.87 25.17 27.84

ARM

Unattacked: 20.69 9.03
η ω ϵ = 8/255 ϵ = 2/255 ϵ = 3/255
−1 y 21.84 7.36 8.51
+1 y 23.51 11.62 12.21
−1 ŷ 11.92 0.91 3.42
+1 ŷ 25.59 13.54 14.28

We remark that, despite the extensiveness of the countermea-
sures to adversarial attacks literature, none of the existing
techniques addresses this important scenario. For instance,
defenses against adversarial attacks on labels and the notion
of certified accuracy have been introduced to improve la-
bel robustness. While these bounds also indirectly bound
confidence scores and calibration (e.g. because in order to
prevent the prediction from changing the confidence cannot
fall below a specific threshold), these are not tight enough to
protect against adversaries explicitly targeting calibration.

Beyond label attacks, attacks directly targeting confidence
scores have been developed. Galil & El-Yaniv (2021) exten-
sively demonstrate the existence of attacks on confidence
scores and discuss how detrimental they can be. While their
discussion revolves around the importance of preserving
confidences on a per-sample level, our analysis revolves
around bounding set-level metrics of confidence, as these
metrics are also relevant in the decision making process.

Feasibility of Attacking Reliability Galil & El-Yaniv
(2021) show it is possible to produce attacks that leave
the accuracy unchanged while degrading the Brier Score.
In a similar fashion, expanding on their notion of Attacks
on Confidence Estimation (ACE)1, we introduce a family
of parameterised ACE attacks we call (η, ω)-ACE attacks.
These attacks solve the following objective:

max
∥γ∥p≤ϵ,F (x+γ)=F (x)

ηLCE(f(x+ γ), ω), (3)

where η ∈ {1,−1} and ω ∈ {y, ŷ} and ŷ is the classifier’s
prediction. Solving the problem above means either max-
imising (η = 1) or minimising (η = −1) the cross-entropy

1Remark: our implementation deviates from Galil & El-Yaniv
(2021), e.g. we use PGD instead of FGSM to find adversaries.

loss LCE of the output computed on the perturbed input
(i.e. to increase or decrease the confidence of the classifier)
with respect to either the true label or the prediction. This is
done without altering the label (i.e. F (x+ γ) = F (x)). In
Table 1, we show that all four possible configurations of our
(η, ω)-ACE can be effective at significantly altering the ECE
on the validation set of CIFAR-10 (Krizhevsky, 2009) and
ImageNet-1K (Deng et al., 2009) using a PreActResNet18
(He et al., 2016b) and ResNet50 (He et al., 2016a), respec-
tively. We show the attacks can be effective both when the
model is trained with standard Expected Risk Minimization
(ERM) and Adversarial Risk Minimization (ARM). As it
can be seen, on an ERM trained ResNet50 on ImageNet,
an (1, y)-ACE with radius ϵ = 2/555 can increase the ECE
from 3.70 to 47.23. While performing adversarial training
can partly alleviate this issue, an (1, ŷ)-ACE attack can still
increase its ECE from 9.03 to 13.54. This clearly indicates
it is possible to significantly manipulate the calibration of a
model while preserving its accuracy.

3. Certifying Calibration
3.1. Prerequisites for Certified Calibration

For our definition of certified calibration, we require clas-
sifiers with predictions that are certifiably robust against
label flips and require bounds on confidence scores. A
state-of-the-art method to obtain such certificates on large
models and datasets is Gaussian Smoothing which con-
structs a smooth classifier by adding Gaussian perturbations
δ ∼ N(0, σID) to its input and aggregating the predictions
(Cohen et al., 2019). Let F̄ : RD → Y be the smoothed
hard classifier. For a radius R, we can state that, for all per-
turbations ∥γ∥2 ≤ R, the prediction will remain constant,
i.e. F̄ (x + γ) = F̄ (x). The certifiable radius R can be
computed in closed form. If the evidence to certify with
R > 0 is insufficient, the classifier abstains. The certificate
on the prediction has been extended by Kumar et al. (2020)
showing a certificate on the confidence. Let z̄ : RD → [0, 1]
be the smoothed soft classifier indicating the confidence of
prediction F̄ . For z̄ it is true, that ∀∥γ∥2 ≤ ϵ:

Φσ(Φ
−1
σ (pA)− ϵ) ≤ z̄(x+ γ) ≤ Φσ(Φ

−1
σ (pA) + ϵ), (4)

where pA and pA are bounds on z̄(x) and Φ is the Gaussian
CDF. Below, assume the bound provided in (4).

We observe that certified accuracy counts abstained predic-
tions as incorrect. As we define certified calibration on top
of models operating in a certified regime for predictions and
confidences, we suggest computing it only on non-rejected
samples because the confidence on abstained predictions is
not well-defined and we wish to inform the reliability of
confidences, when the model does not abstain.
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3.2. Certifying Brier Score

While the Brier score generally is a unified assessment
of model performance and calibration, its interpretation
is slightly different for certified models. Changes in the
Brier score as function of confidence perturbations solely
reflect changes in the calibration as the accuracy is constant.

Consider a dataset of N samples on which we want to com-
pute calibration. Let l,u ∈ RN be the lower and upper
bound on the top confidence z ∈ RN , respectively, as pro-
vided by the certificate on the confidences. We can state the
following upper bound on the Brier score.

Theorem 3.1. Let l, u be the certificates on z and z be
the output certified classifier as defined above. Further, let
c ∈ RN be the indicator that predictions are correct. The
upper bound on the Brier score is given by:

max
l≤z≤u

TLBS(z, c) =
1

N
∥c− lI{c = 1}+ uI{c = 0}∥22.

(5)

Proof. See Appendix C.

This bound is tight and relies on the fact that shifting the
confidences leaves c unchanged while remaining inside the
certified regime. Therefore, an adversary cannot flip the
prediction to increase the confidence gap, the sample-level
distance between correctness and confidence. The Brier
score is maximised when the confidence gap is large; the
opposite of what a good classifier intuitively should do.
Plugging the certificates on the confidence (such as (4))
into the equation above as l and u, provides a certificate as
function of the perturbation on the input data.
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Figure 2: Certified Brier scores on ImageNet. For small
radii, small smoothing σ outperforms larger ones, but as
radii increase, large σ outperform smaller σ.

3.3. Certifying Calibration Error

While both, the Brier Score and the Expected Calibration
Error, capture some notion of calibration, the confidence

scores bounding the Brier score (5) do not bound the ECE,
which can be increased even further. Therefore, we will
introduce the notion of the certified calibration error and
provide a method to approximate it.

Definition 3.2. The certified calibration error (CCE) on
dataset D = {xn, yn}Nn=1 at radius ϵ is defined as the maxi-
mum ECE, that can be observed as a result of perturbations
on the inputs within an ℓ2 ball of radius ϵ. Let, γn be the
perturbation on input xn. The certified calibration error is:

CCE = max
∀n:∥γn∥2≤ϵ

ˆECE
(
[z̄(xn + γn)]

N
n=1,y

)
. (6)

This aims to find the largest estimated calibration error on a
dataset, if every sample is perturbed by at most ϵ. Finding
such a bound is not trivial, as (2) is neither convex nor dif-
ferentiable. Therefore, we propose a numerical method to
estimate (6) and provide an empirical, approximate certifi-
cate, the approximate certified calibration error (ACCE).

3.4. CCE as Mixed-Integer Program

We show in this section that we may solve (6) by interpreting
the calibration error as the objective of a mixed-integer
problem. Since the ECE estimator (2) uses bins to estimate
average confidence and accuracy, one can reformulate the
problem as a bin assignment problem, where N confidence
scores are assigned to M bins. We seek to jointly solve the
assignment problem and find the values of zn maximising
the calibration estimator across bins.

More precisely, the estimator bins each confidence score
zn into M bins. While perturbing the data, this bin as-
signment might change: z̄(x) might belong to bin m, but
z̄(x + γ) to m′ ̸= m. While the assignment is naturally
determined by the confidence score, it is key to our reformu-
lation to split these into separate variables. The motivation
is that very small changes in zn might lead to a shift in
bin assignment and thus contribute differently to the cal-
ibration error. We define the integer-valued assignment
an,m of confidence zn to bin m and accordingly define
a = [a1,1, ..., a1,M , a2,1, ..., aN,M ]⊤ ∈ {0, 1}NM , where
N is the number of samples and M the number of bins. The
confidence score maximising the calibration error might be
different across bins, i.e. it is possible that the worst-case
for bin m is different than for bin m′ ̸= m: z∗n,m ̸= z∗n,m′ .
Therefore, we model the confidence independently for each
bin introducing bin-specific confidences zn,m and with it
z = [z1,1, ..., z1,M , z2,1, ..., zN,M ]⊤ ∈ [0, 1]NM . Further,
let cn be the indicator whether prediction n is correct, i.e.
cn = I{F̄ (xn) = yn} and let en,m = cn−zn,m, the sample
confidence gap. Note that cn is independent of the bin as-
signment as a result of certification (i.e. while the confidence
may shift, the prediction will remain unchanged). Analog to
a and z, we define e = [e1,1, ..., e1,M , e2,1, ..., eN,M ]⊤ ∈
RNM . Now let B be a stack of N identity matrices of
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size M , i.e., B = [IM , ..., IM ]⊤. We define E(z) =(
e1⊤

M

)
⊙B ∈ RNM×M where ⊙ is the Hadamard product.

We can now rewrite the calibration error.

Theorem 3.3. Let a and E be the output of a certified
classifier as defined above. The calibration error estimator
in (2) can be expressed as:

ˆECE =
1

N
∥E(z)⊤a∥1 (7)

where a and E are subject to the unique assignment, confi-
dence and valid assignment constraints below. Thus, max-
imising (7) is equivalent to solving (6).

Proof. See Appendix D.1.

Unique Assignment Constraint The assignment variable a
has to be constrained such that each data point is assigned to
exactly one bin, i.e.

∑
m an,m = 1. To this end, we define

C = IN ⊗ 1M ∈ RNM×N , where ⊗ is the Kronecker
product. C sums up all assignments per data point and
hence our constraint becomes C⊤a = 1N .

Confidence Constraint The problem in (6) is defined over
perturbations ∥γn∥2 ≤ ϵ for each input xn, which can
be propagated into bounds on confidences zn using cer-
tificates on the confidences, such as (4) following Kumar
et al. (2020). Let lzn ≤ zn,m ≤ uz

n be the lower and up-
per bound on the confidence as provided by the certificate.
In addition, any confidence assigned to bin m has to ad-
here to the boundaries of this bin, i.e. lBm ≤ zn,m ≤ uB

m.
We can combine these two conditions to unify the bounds:
max(lzn, l

B
m) = ln,m ≤ zn,m ≤ un,m = min(uz

n, u
B
m).

With this, we define l = [l1,1, ..., l1,M , l2,1, ..., lN,M ]⊤ and
u = [u1,1, ..., u1,M , u2,1, ..., uN,M ]⊤ and state the full con-
straint: l ≤ z ≤ u.2

It is possible that the bounds due to the binning and the
certificate on zn do not intersect, i.e. for some n,m it
might be that [lzn, u

z
n) ∩ [lBm, uB

m) = ∅. This is expected
for narrow certificates on z or a large number of bins. For
these instances, we will set z ← 0 and define l′ and u′

to be l and u with the same elements set to 0. We define
Sz = {z : ∀n,m : l′n,m ≤ zn,m ≤ u′

n,m} to be the feasible
set on z.

Valid Assignment Constraint Above we have identified
that some confidences can never be assigned to some bins.
For those instances, we constrain an,m = 0. Let kn,m =
I{ln,m ≥ un,m} be the indicator that bin m is inaccessible
to data point n. We define matrix K to be a NM×N matrix

2In Section 3.2 on the CBS, l,u ∈ [0, 1]N are the immediate
bounds on z ∈ [0, 1]N provided by the certificate on the confi-
dences. Here, l,u ∈ [0, 1]NM provide bounds on the expanded
z ∈ RNM as defined in this section. Be aware that these defini-
tions are overloaded and these bounds now combine binning and
confidence certificates.

summing all inaccessible bin assignments. Formally, letting
k = [k1,1, ..., k1,M , k2,1, ..., kN,M ]⊤, and K = k1⊤

N ⊙
(IN ⊗ 1M ), the constraint is: K⊤a = 0N .

Formal Program Statement We summarize the constraints
above and state the program in its canonical form for clarity.
The mixed-integer program over (a, z) is given by:

maximise
1

N
∥E(z)⊤a∥1 (8)

subject to:

a ∈ {0, 1}NM , C⊤a = 1N , K⊤a = 0N , z ∈ Sz

While this expression comes a the cost of increasing the
number of variables compared to (6), this provides us with
a useful framework to run a numerical solver.

3.5. ADMM Solver

We propose to use the ADMM algorithm (Boyd et al., 2011)
to solve minimise (8). While ADMM has proofs for con-
vergence on convex problems, it is well known that it en-
joys good convergence properties even on non-convex prob-
lems. ADMM minimises the augmented Lagrangian of the
constrained problem by sequentially solving sub-problems
alternating between minimizing the primal variables and
maximizing the dual variables.

We follow Wu & Ghanem (2019) and Bibi et al. (2023) to re-
lax the binary-constraints on a. Note that, a ∈ {0, 1}NM ⇔
a ∈ Sb ∩ S2, where Sb is the unit hypercube and S2 is the
ℓ2-sphere, both centered at 1

2 . We introduce auxiliary vari-
ables q1 ∈ Sb and q2 ∈ S2 and add constraints a = q1

and a = q2. Similarly, we replace the constraint z ∈ Sz

by enforcing it on g and adding z = g. Updates on the
primal variables (a, z, q1, q2, g) are performed via gradient
descent (see Appendix D).

In our experiments, ADMM always converges in under 3000
steps, and runs in a matter of minutes. At convergence, we
observe that all constraints are sufficiently met. Exploring
various factors on the convergence, we conducted a large hy-
perparameter search (see Appendix E.2.1) and base our final
hyperparameter on these results. We recommend running
ADMM on two different initialisation of z, the observed
adversary-free confidences, as well as those achieving the
CBS and subsequently picking the larger ACCE. We find
that the maximum ACCE is achieved well before ADMM
has converged. Therefore, we recommend projecting a copy
of a and z into their feasible set after each step and calculate
the ACCE.

4. Experiments
4.1. Experimental setup and details

We follow the work on certifying confidences (Kumar et al.,
2020) in our experimental setup. We use a ResNet-110
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Figure 3: The ACCE returned by ADMM, dECE and the Brier confidences are shown here for ImageNet. ADMM is the
most effective method as it uniformly yields the largest bounds.

model for CIFAR-10 experiments and a ResNet-50 for
ImageNet trained by Cohen et al. (2019). We rely on the
certificates provided by Cohen et al. (2019) and (Kumar
et al., 2020) as they provide us with closed form certificates.
As commonly done, we sample 500 images from the
test set of ImageNet to conduct our experiments. For
CIFAR-10, we use the entire test-set to compute the
CBS, but sample 2000 certified images for the ACCE.
Gaussian Smoothing is performed on 100, 000 samples
and we certify at α = .001. For our work, we use the
certifiable radius provided by Cohen et al. (2019) and
rely on the confidence bounds in (4). As mentioned,
we only certify calibration at ϵ when the prediction can
be certified at ϵ. We compute certified metrics on ϵ ∈
{0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1.00, 1.50, 2, 2.5}
for CIFAR-10 and additionally 3.0 for ImageNet.

4.2. Certified Brier Score

We use Theorem 3.1 to obtain the certificate on the Brier
Score in closed form. We report the CBSs for smooth mod-
els with different smoothing σs and for a range of certified
radii. The results for CIFAR-10 are shown in Figure 8 in Ap-
pendix E.1 and in Figure 2 for ImageNet. For both datasets,
we observe that the CBSs increases with larger certified
radii. Models with small σ suffer from about a 100% in-
crease in Brier score at ϵ = 0.25, while stronger smoothed
models only increase by < 50%. As strongly smoothed
models yield tighter certificates on confidences (see Figure
7 in Appendix B), we find that those models are more robust
for larger radii at the cost of performance on smaller radii.

4.3. Certified Calibration Error

We compare the ACCE from ADMM with two other tech-
niques and find that ADMM outperforms both. First, we
obtain the confidences bounding the Brier score (the "Brier
confidences") and compute the resulting ECE as base-
line. Second, we utilise the differentiable calibration error
(dECE) (Bohdal et al., 2021) and perform gradient ascent to
maximise it (see Appendix F.1). We compare these methods
for a range of certified radii and different smoothing σ. For

CIFAR-10 the results are shown in Figure 12 in Appendix
E.2.2 and for ImageNet in Figure 3. As with for the CBS,
large certified radii are associated with worse calibration.
We find that ADMM uniformly yields higher ACCE than
the dECE with differences up to approximately 0.2, which
is a strong qualitative difference in calibration. While all
method yield very similar bounds on large radii, we may
conclude the ADMM is by far more effective than the other
methods in approximating the CCE.

4.4. Discussion

Across all experiments, we observe that even small pertur-
bations on input data can harm calibration significantly and
thus the certificates take on large values. This finding is
in line with Galil & El-Yaniv (2021), who report similar
results on non-certified models. Strongly smoothed models
have worse calibration for small radii and better calibration
for large radii suggesting a calibration-robustness-trade-off.
Interestingly, we observe that all three methods to find the
ACCE are approximately equal at large radii. We believe
that this is not an insufficiency of the ACCE to approximate
the CCE, but rather believe that the CCE and CBS solutions
converge. For accuracies 0 and 1, and unbounded confi-
dences, it is trivial to see that the CCE is achieved by the
same confidences as the CBS. We conjecture this is the case
for other accuracies as well.

5. Related Work
Only few papers discuss the confidence scores on certified
models. Jeong et al. (2021) propose a variant of mixup
(Zhang et al., 2018) for certified models to reduce over-
confidence in runner-up classes with the goal of increasing
the certified radius, but do not examine the confidence as
uncertainty estimator. A wider body of literature has been
published relating adversarial robustness to calibration on
non-certified models. Grabinski et al. (2022) show that ro-
bust models are better calibrated while other work shows
that poorly calibrated data points are easier to attack (Qin
et al., 2021). This is used by the latter to improve calibra-
tion through adversarial training. Stutz et al. (2020), utilise
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confidence scores and calibration techniques to improve
adversarial robustness. Few works investigate the calibra-
tion of uncertainty calibration under adversarial attack (Sen-
soy et al., 2018; Tomani & Buettner, 2021; Kopetzki et al.,
2021), however their work is not very applicable as these
use more elaborate uncertainty scores than softmax output.

While some works provide bounds on calibration in various
contexts, none of them are applicable to our setup (Kumar
et al., 2019; Qiao & Valiant, 2021; Wenger et al., 2020).

Acknowledgements
We thank the reviewers for the efforts and helpful comments.
Further, we thank Mohsen Pourpouneh for his support.

This work is supported by a UKRI grant Turing AI Fel-
lowship (EP/W002981/1). C. Emde is supported by the
EPSRC Centre for Doctoral Training in Health Data Sci-
ence (EP/S02428X/1) and Cancer Research UK (CRUK).
A. Bibi has received an Amazon Research Award. F. Pinto’s
PhD is funded by the European Space Agency (ESA). T.
Lukasiewicz is supported by the AXA Research Fund. We
also thank the Royal Academy of Engineering and FiveAI.

References
Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D.,

Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi,
A., Acharya, U. R., Makarenkov, V., and Nahavandi, S.
A review of uncertainty quantification in deep learning:
Techniques, applications and challenges. Information
Fusion, 76:243–297, 2021. ISSN 1566-2535.

Bibi, A., Alqahtani, A., and Ghanem, B. Constrained Clus-
tering: General Pairwise and Cardinality Constraints.
IEEE Access, 11:5824–5836, 2023. ISSN 2169-3536.
doi: 10.1109/ACCESS.2023.3236608.

Bohdal, O., Yang, Y., and Hospedales, T. Meta-Calibration:
Meta-Learning of Model Calibration Using Differentiable
Expected Calibration Error. In ICML 2021 Workshop
on Uncertainty & Robustness in Deep Learning, 2021.
_eprint: 2106.09613.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
Distributed Optimization and Statistical Learning via the
Alternating Direction Method of Multipliers. Foundations
and Trends® in Machine Learning, 3(1):1–122, 2011.
ISSN 1935-8237. doi: 10.1561/2200000016.

Brier, G. W. Verification of Forecasts Expressed in Terms of
Probability. Monthly Weather Review, 78(1):1, January
1950. doi: 10.1175/1520-0493(1950)078\textless0001:
VOFEIT\textgreater2.0.CO;2.

Bröcker, J. Reliability, sufficiency, and the decomposition
of proper scores. Quarterly Journal of the Royal Mete-

orological Society, 135(643):1512–1519, 2009. ISSN
0035-9009. doi: 10.1002/qj.456. Place: Chichester, UK.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified Adversar-
ial Robustness via Randomized Smoothing. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of the
36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research,
pp. 1310–1320. PMLR, June 2019.

DeGroot, M. H. and Fienberg, S. E. The Comparison and
Evaluation of Forecasters. Journal of the Royal Statistical
Society. Series D (The Statistician), 32(1/2):12–22, 1983.
ISSN 00390526, 14679884. Publisher: [Royal Statistical
Society, Wiley].

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. ImageNet: A large-scale hierarchical image database.
In cvpr, 2009.

Galil, I. and El-Yaniv, R. Disrupting Deep Uncertainty Es-
timation Without Harming Accuracy. In Ranzato, M.,
Beygelzimer, A., Dauphin, Y., Liang, P. S., and Vaughan,
J. W. (eds.), Advances in Neural Information Process-
ing Systems, volume 34, pp. 21285–21296. Curran Asso-
ciates, Inc., 2021.

Goodfellow, I., Shlens, J., and Szegedy, C. Explaining
and Harnessing Adversarial Examples. In International
Conference on Learning Representations, 2015.

Grabinski, J., Gavrikov, P., Keuper, J., and Keuper, M. Ro-
bust Models are less Over-Confident. In Oh, A. H., Agar-
wal, A., Belgrave, D., and Cho, K. (eds.), Advances in
Neural Information Processing Systems, 2022.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. 34th International
Conference on Machine Learning, ICML 2017, 3:2130–
2143, June 2017. ISSN 9781510855144.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016a.

He, K., Zhang, X., Ren, S., and Sun, J. Identity Mappings
in Deep Residual Networks. In European Conference on
Computer Vision, 2016b.

Jeong, J., Park, S., Kim, M., Lee, H.-C., Kim, D.-G., and
Shin, J. SmoothMix: Training Confidence-calibrated
Smoothed Classifiers for Certified Robustness. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y., Liang, P. S., and
Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems, volume 34, pp. 30153–30168. Cur-
ran Associates, Inc., 2021.



Certified Calibration: Bounding Worst-Case Calibration under Adversarial Attacks

Kopetzki, A.-K., Charpentier, B., Zügner, D., Giri, S., and
Günnemann, S. Evaluating Robustness of Predictive
Uncertainty Estimation: Are Dirichlet-based Models Re-
liable? In Meila, M. and Zhang, T. (eds.), Proceedings
of the 38th International Conference on Machine Learn-
ing, volume 139 of Proceedings of Machine Learning
Research, pp. 5707–5718. PMLR, July 2021.

Krizhevsky, A. Learning Multiple Layers of Features from
Tiny Images. 2009.

Kumar, A., Liang, P. S., and Ma, T. Verified Uncertainty
Calibration. In Wallach, H., Larochelle, H., Beygelz-
imer, A., Alché-Buc, F. d., Fox, E., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019.

Kumar, A., Levine, A., Feizi, S., and Goldstein, T. Cer-
tifying Confidence via Randomized Smoothing. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F.,
and Lin, H. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 5165–5177. Curran As-
sociates, Inc., 2020.

Linardatos, P., Papastefanopoulos, V., and Kotsiantis, S.
Explainable AI: A Review of Machine Learning Inter-
pretability Methods. Entropy, 23(1), 2021. ISSN 1099-
4300. doi: 10.3390/e23010018.

Murphy, A. H. Scalar and Vector Partitions of the Prob-
ability Score : Part II. N-State Situation. Journal of
Applied Meteorology (1962-1982), 11(8):1183–1192, Jan-
uary 1972. Publisher: American Meteorological Society.

Murphy, A. H. A New Vector Partition of the Probability
Score. Journal of Applied Meteorology, 12(4):595–600,
1973.

Naeini, M. P., Cooper, G. F., and Hauskrecht, M. Obtaining
Well Calibrated Probabilities Using Bayesian Binning.
Proceedings of the ... AAAI Conference on Artificial Intel-
ligence. AAAI Conference on Artificial Intelligence, 2015:
2901–2907, January 2015. ISSN 2159-5399.

Nguyen, K. and O’Connor, B. Posterior calibration and ex-
ploratory analysis for natural language processing models,
2015. _eprint: 1508.05154.

Nixon, J., Dusenberry, M. W., Zhang, L., Jerfel, G., and
Tran, D. Measuring Calibration in Deep Learning. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June
2019.

Qiao, M. and Valiant, G. Stronger Calibration Lower
Bounds via Sidestepping. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2021, pp. 456–466, New York, NY, USA,

2021. Association for Computing Machinery. ISBN 978-
1-4503-8053-9. doi: 10.1145/3406325.3451050. event-
place: Virtual, Italy.

Qin, Y., Wang, X., Beutel, A., and Chi, E. Improving
Calibration through the Relationship with Adversarial
Robustness. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P. S., and Vaughan, J. W. (eds.), Advances in
Neural Information Processing Systems, volume 34, pp.
14358–14369. Curran Associates, Inc., 2021.

Sensoy, M., Kaplan, L., and Kandemir, M. Evidential deep
learning to quantify classification uncertainty. In Ad-
vances in Neural Information Processing Systems, vol-
ume 2018-Decem, pp. 3179–3189, June 2018.

Stutz, D., Hein, M., and Schiele, B. Confidence-Calibrated
Adversarial Training: Generalizing to Unseen Attacks. In
III, H. D. and Singh, A. (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pp.
9155–9166. PMLR, July 2020.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the Inception Architecture for Computer
Vision. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition,
volume 2016-Decem, pp. 2818–2826, December 2016.
ISBN 978-1-4673-8850-4. doi: 10.1109/CVPR.2016.
308.

Tomani, C. and Buettner, F. Towards Trustworthy Predic-
tions from Deep Neural Networks with Fast Adversarial
Calibration. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 35(11):9886–9896, May 2021. doi:
10.1609/aaai.v35i11.17188.

Wenger, J., Kjellström, H., and Triebel), R. Non-Parametric
Calibration for Classification. In Chiappa, S. and Calan-
dra, R. (eds.), Proceedings of the Twenty Third Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 108 of Proceedings of Machine Learning
Research, pp. 178–190. PMLR, August 2020.

Wu, B. and Ghanem, B. \ell _p-Box ADMM: A Versa-
tile Framework for Integer Programming. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
41(7):1695–1708, July 2019. ISSN 1939-3539. doi:
10.1109/TPAMI.2018.2845842.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D.
mixup: Beyond Empirical Risk Minimization. In Inter-
national Conference on Learning Representations, 2018.



Certified Calibration: Bounding Worst-Case Calibration under Adversarial Attacks

A. Motivation
A.1. Calibration ̸= Accuracy

It is important to note, that accuracy and calibration measure different concepts and one may not infer model performance
from calibration with certainty or vice versa. Consider the following examples, where we fix one quantity and construct
datasets resulting in other quantity taking on opposing values. These are illustrated in Figure 4. First, we fix the calibration
error to ECE = 0.5 and for Case 1, we construct N data points with label yn = 1, confidence zn = 0.5 and thus prediction
ŷn = 1. The calibration error here is 0.5 and the accuracy is 1. For Case 2, our predictions remain the same, but we change
the labels to yn = 0 resulting in an accuracy of 0 while keeping the calibration error of 0.5. Next, we fix the accuracy to
1 and construct examples with ECE = 0.5 and ECE = 0. The former is given by Case 1. The latter (Case 3) can be
constructed using yn = 1 and zn = 1. Thus, we can construct a distribution over Z and Y such knowing the accuracy tells
us nothing about the calibration error and vice versa. Clearly, when evaluating the quality of predictions, it is insufficient
to only assess the accuracy. Hence, we argue that certifying accuracy in safety relevant applications is insufficient and
calibration should be considered.

0.0 0.5 1.0
Confidence (z)

0

1

La
be

l (
y)

Case 1

Case 2

ECE=0.5

Accuracy
1.0
0.0

0.0 0.5 1.0
Confidence (z)
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Accuracy=1

ECE
0.5
0.0

Figure 4: This visualisation shows that we can fix either the accuracy or the calibration and construct a dataset to obtain
the other quantity with opposite values. The example looks at a binary classification problem. The empty circle displays
the point of perfect calibration and the full circle is the calibration on the data. The distance of the line in-between is the
calibration error.
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A.2. Empirical Attacks

Figure 5: Reliability Diagrams for a ResNet50 trained with expected risk minimisation on ImageNet-1K and attack radius
ϵ = 2/255. (a) No Attack, (b) (1, y)-ACE attack, (c) (−1, y)-ACE attack, (d) (1, ŷ)-ACE attack, (e) (−1, ŷ)-ACE attack.
The histogram on the bottom represents the distribution of confidence scores.

Figure 6: Reliability Diagrams for a ResNet50 trained with adversarial risk minimisation on ImageNet-1K and attack radius
ϵ = 2/255. (a) No Attack, (b) (1, y)-ACE attack, (c) (−1, y)-ACE attack, (d) (1, ŷ)-ACE attack, (e) (−1, ŷ)-ACE attack.
The histogram on the bottom represents the distribution of confidence scores.
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B. Confidence Bounds
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Figure 7: Distance between upper and lower bound of the confidence certificates provided by Kumar et al. (2020). Sub-
sampled to 500 samples from the test set of CIFAR10.

.

Kumar et al. (2020) introduce the bounds on the confidence scores, but their work focuses on issuing a certificate given a
lower bound on the confidence. Therefore, they do not investigate the upper bounds on the confidence. Here, we compute
the interval of certified confidences and compare the two certificates on the confidence: The standard STANDARD bound as
given in (4) and the more advanced CDF bound. In Figure 7, the distance between the upper and lower bound is plotted for
a range of smoothing σ and certification radii R on a random subset of 500 samples from the CIFAR-10 test set. We may
observe that the CDF method yields uniformly tighter bounds in practice.

C. Brier Bound
Here we provide a proof to Theorem 3.1 as stated above.

Proof. Assume z∗ = lI{c = 1} + uI{c = 0} is not the maximum and we want to change z∗ to maximise the TLBS.
For some data point with cn = 1, the bound is z∗n = ln. Reducing z∗n is not possible without leaving its feasible set
(ln ≤ z∗n ≤ un), and thus the only way to find the maximum is to increase it. However, increasing z∗n would reduce cn − z∗n
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which in turn reduces the error, as ∥ · ∥2 is strictly increasing in cn − zn. Thus, we have a contradiction for cn = 1. The
other case, cn = 0 is analog and both are true for all n and thus, the maximum is proven.

D. Calibration as Mixed-Integer Program
D.1. Restating the Calibration Error

Here we provide a proof of Theorem 3.3.

Proof. Let E(z) and a be as defined as above. We start with the expression in (7) and show equality to (2). Note that an,m
is 1 if data point n is in bin Bm and 0 otherwise. Also note that by the definition of E that en,m = en when an,m = 1:

∥E⊤a∥1 =

M∑
m=1

∣∣em(z)⊤a
∣∣ (9)

=

M∑
m=1

∣∣∣∣∣
N∑

n=1

en,man,m

∣∣∣∣∣ (10)

=

M∑
m=1

∣∣∣∣∣ ∑
n∈Bm

en

∣∣∣∣∣ (11)

=

M∑
m=1

∣∣∣∣∣ ∑
n∈Bm

cn − zn

∣∣∣∣∣ (12)

=

M∑
m=1

|Bm|

∣∣∣∣∣ 1

|Bm|
∑

n∈Bm

cn −
1

|Bm|
∑

n∈Bm

zn

∣∣∣∣∣ (13)

Dividing both sides by N yields the result.

D.2. Lagrangian

We formally state the Augmented Lagrangian. The variables a, z, q1, q2 and g are described as above, each of dimension
NM .

L(a, z,g,q1,2,λ1,2,3,4,5) = −|E(z)⊤a|1M

+ I∞{q1 ∈ Sb}+ λ⊤
1 [a− q1] +

ρ1
2
∥a− q1∥22

+ I∞{q2 ∈ S2}+ λ⊤
2 [a− q2] +

ρ2
2
∥a− q2∥22

+ λ⊤
3 [C

⊤a− 1N ] +
ρ3
2
∥C⊤a− 1N∥22

+ λ⊤
4 K

⊤a+
ρ4
2
∥K⊤a∥22

+ I∞{g ∈ Sz}+ λ⊤
5 [z− g] +

ρ5
2
∥z− g∥22

(14)

with dual variables λ1,2,5 ∈ RNM , λ3,4 ∈ RN . Here, I∞ is 0 if the statement is true and∞ otherwise. The values of ρi > 0
are hyperparameters to be tuned.

D.3. ADMM Updates

We perform T ADMM steps. At each ADMM step we cycle through the primal variables a and z and perform gradient
descent. For the variables q1, q2 and g, we obtain an analytic solution by equating the gradient to 0, solving the equation
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and projecting the variables into their feasible set. For q1, the update Uq1
is given by

q1 ← clamp[0,1]

(
λ1

ρ1
+ a

)
, (15)

for q2 the update Uq2
is given by

q2 ←
1

2
1+

√
NM

2

λ2

ρ2
+ a− 1

21

∥λ2

ρ2
+ a− 1

21∥2
, (16)

and finally, the update Ug is given by

g← clamp[l′,u′]

(
λ5

ρ5
+ z

)
. (17)

The updates on the dual variables λi are performed through a single gradient ascent step with step size ρi.

With these definitions, we can formalise the algorithm for the ADMM updates.

Algorithm 1 The ADMM Updates

input ADMM parameters {αa, αz, ρ1,2,3,4,5}, primal variables
{
a(0), z(0),q

(0)
1 ,q

(0)
2 ,g(0)

}
and dual variables {λi}5i=1

output ACCE
for t = 1 to T do
a(t) ← a(t−1) − αa∇aL

(
a(t−1), z(t−1),g(t−1),q

(t−1)
1,2 ,λ

(t−1)
1,2,3,4,5

)
z(t) ← z(t−1) − αz∇zL

(
a(t), z(t−1),g(t−1),q

(t−1)
1,2 ,λ

(t−1)
1,2,3,4,5

)
g(t) ← Ug

(
z(t),λ

(t−1)
5

)
q
(t)
1 ← Uq1

(
a(t),λ

(t−1)
1

)
q
(t)
2 ← Uq2

(
a(t),λ

(t−1)
2

)
λ
(t)
i ← λ

(t−1)
i + ρi∇λi

L
(
a(t), z(t),g(t),q

(t)
1,2,λ

(t−1)
1,2,3,4,5

)
for i = 1, 2, 3, 4, 5

end for

E. Experimental Results
E.1. Brier Score

E.2. ADMM for Certified Calibration Error

E.2.1. ADMM HYPERPARAMETER SEARCH

We performed a random search hyperparameter search for the ADMM solver to find reasonable hyperparameters that are
efficient across experiments.

• The learning rate for z, αz: We test values from 1× 10−5 to 1× 10−2 and find it has little influence.

• The learning rate for a, αa: We test values from 5× 10−4 to 5× 10−2 for ImageNet and from 1× 10−5 to 1× 10−2

for CIFAR10. Larger learning rates are preferred. In our experiments 0.001 to 0.05 worked best.

• The Lagrangian smoothing variable ρi: We tested starting values from 0.001 to 0.5. We find little influence but values
around 0.01 to 0.05 works best. We test multiplicative schedules to increase ρi over time with increases starting at 1‰
to 4%. While larger values of ρ improve constraint convergence, they can dominate gradients when the constraints
have not sufficiently converged yet, and thus ADMM easily diverges. Schedules around 1.02% to 1.05% per step
are effective and we stop increasing ρ at 10, which is completely sufficient to meet the constraints. We find, that ρi
scheduling is important. But applying the same schedule described above for all ρ = ρ1, ..., ρ5 works reasonably well.

• We test performing 1 to 3 updates for a and z per ADMM step and find that more steps do not aid results while slowing
down ADMM. We thus, recommend 1 step per ADMM step.



Certified Calibration: Bounding Worst-Case Calibration under Adversarial Attacks

0.0
0
0.0

5
0.1

0
0.1

5
0.2

0
0.2

5
0.5

0
0.7

5
1.0

0
1.2

5
1.5

0
1.7

5
2.0

0
2.5

0

Certified Radius

0.0

0.2

0.4

0.6

0.8

Br
ie

r S
co

re

0.12
0.25
0.5
1.0

Figure 8: Certified Brier scores (CBS) on CIFAR-10 across a range of certified radii. For small radii, models with small
smoothing σ outperforms those with larger σ, but as radii increase, large σ outperform smaller σ. As noted in section 3.2,
changes in the Brier score as a function of confidence perturbations are solely reflecting calibration on certified models.
However, in this and Figure 2 the dataset changes across certified radii, and thus increases in the CBS cannot solely be
attributed to calibration.

• We test clipping values of a. As we constrain a = q2, we clip ∥a − 1/2∥∞ ≤ 1.2∥q2 − 1/2∥∞. Note that when a
converges, it will be significantly smaller than this constraint. We have never observed any decline in performance with
this approach but seen that it stabilises the optimisation problem in rare instances.

• We clip the gradients of a to 5 in infinity norm aiding stability.

• The initialisation of a has a major effect on the performance of ADMM, more so than any other hyperparameter.
While it is an obvious solution to initialise a(0) such that it is a valid assignment for z(0), we find that this is majorly
outperformed by uniform initialisations. We tested 0, 1/M and 1 and find that 1/M works best.

• The initialisation of z has a mild effect on ADMM performance given that sometimes, we might have prior knowledge
on how and in which direction the model currently is miscalibrated. We recommend initialising it with adversary-free
confidences and with the confidences achieving the Brier bound and subsequently picking the larger one.

E.2.2. ADMM VS DECE VS BRIER BOUND

To further assess the efficacy of the ADMM algorithm, we compare it to an alternative methods of approximating bounds:
the differentiable calibration error (dECE) (Bohdal et al., 2021) and the Bounds obtained by the confidences that maximise
the Brier score (Brier confidences). We find that ADMM outperforms both other techniques. We performed hyperparameter
searches for ADMM and dECE with a wide range, but carefully selected hyperparameters. For ADMM we run between 259
and 1560 trials (depending on the runtime) and for dECE always 2000 trials. We explore a subset of radii and smoothing σ
(as visible from our plots). Our first observation is, that the dECE is very sensitive to the initialisation of confidence scores
indicating that gradient ascent on dECE (even with very large learning rates) does not sufficiently explore the loss surface.
While differences are also observable for ADMM, these are very small. Figure 9 show these differences for ImageNet.
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Figure 9: The results of the hyperparameter search are shown here. For each combination of Dataset, σ and Radius, the
maximum achieved by the three methods, ADMM, dECE and Brier are shown here. While dECE is able to be uniformly
better than the Brier confidences, ADMM outperforms both by a significant margin.

Second, as a result of our hyperparameter search, we note that the best ADMM results outperform the best dECE by a
significant margin. To demonstrate this, we compare the maxima achieved across trials by the dECE, the Brier bound and
ADMM in Figure 10.
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Figure 10: The results of the hyperparameter search are shown here. For each combination of Dataset, σ and Radius, the
maximum achieved by the three methods, ADMM, dECE and Brier are shown here. While dECE is able to be uniformly
better than the Brier confidences, ADMM outperforms both by a significant margin.
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As noted in the main paper, for large radii, the methods converge to each other. Beyond, the comparison of maximum values
above, we find that even a single one-size-fits-all set of hyperparameters for ADMM outperforms the maximum achieved by
the dECE hyperparameter search in most cases as shown in Figure 11.
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Figure 11: We compare a single set of parameters for ADMM across all Dataset, Smoothing and Epsilon combinations and
find that it outperforms the maximum dECE from a hyperparameter search of 2000 samples in 17/19 instances.

The hyperparameters used for ADMM are as follows: All ρis are initialised to 0.01 with increases every step by a factor
of 0.4%. Both learning rates are set to 0.001. The assignments are initialised to 1/M , the confidence is initialised to
adversary-free and Brier confidence, a measure benefiting the dECE much more than the ADMM. The gradients of the
assignment are clipped to 1.

We use our results from the hyperparameter searches to run ADMM and dECE on a finer grid of certified confidences as
referenced in section 4.1. Here, we present the results for the finer grid for CIFAR-10.
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Figure 12: The ACCE is shown here for ADMM, dECE and the Brier confidences. One set of carefully selected hyperpa-
rameter is used. For a wider overview see Figure 10

F. Differentiable Calibration Error
F.1. Definition

Bohdal et al. (2021) note that the standard calibration error estimator is non-differentiable in two operations: the accuracy
and the hard binning. As we are assuming certified predictions, their correctness cn (and thus the accuracy per bin) is
constant with respect to the confidence scores zn and thus does not need to be differentiable. We therefore simplify their
dECE and apply only one differentiable approximation. We restate the calibration error estimator from (2) and simplify:
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ˆECE =

M∑
m=1

|Bm|
N

∣∣∣∣∣ 1

|Bm|
∑

n∈Bm

cn −
1

|Bm|
∑

n∈Bm

zn

∣∣∣∣∣ (18)

=
1

N

M∑
m=1

∣∣∣∣∣
N∑

n=1

an,m(cn − zn)

∣∣∣∣∣ (19)

where an,m ∈ {0, 1} is the hard indicator whether data point n is assigned to bin m. This is replaced with a soft indicator
sn,m ∈ [0, 1] with

∑
m sn,m = 1. Define matrix S ∈ [0, 1]N×M with elements sn,m and let e = [c1 − z1, ..., cN − zN ].

We can write the differentiable calibration error ˆdECE as:

ˆdECE =
1

N
∥S⊤e∥1 (20)

The soft assignment sn,m is obtained the following way. For M equal width bins with cut-offs β1 < ... < βM−1, we define
b with elements bi = −

∑i−1
m=1 βm. Further, let w = [1, 2, ...,M ] we obtain the soft assignments sn through a tempered

softmax function: sn = σ((wzn + b)/τ). For τ → 0, the vector sn approximates a one-hot encoded vector and (20)
recovers the original ECE.

F.2. dECE Parameters

As for ADMM, we perform an extensive hyperparameter search for the dECE. Our key insight is to start the optimisation
with high values of τ , i.e. 0.01 as this increases the smoothness of the objective function and slowly decrease τ to about
1× 10−6 at which point we usually observe a difference between the ECE and dECE of less than 1× 10−6.

As for the ADMM, we test a wide range of hyperparameters for the dECE. The one most significant hyperparameter is the
initialization of z: We test the same initialisation as for ADMM: adversary-free and Brier confidences. In addition, we
test random Gaussian and random uniform initialisation. We do not find a single optimal strategy. It is possible that the
adversary-free ECE is higher than the ECE obtained by using the Brier confidences. As dECE shows poor performance
in exploring the loss surface, we recommend initialisation to whatever initialisation yields the largest error to begin with.
All other hyperparameters are insignificant in comparison and usually over 95% of variation in results explained by the
initialisation of z. We test various learning rates, schedulers for τ (as mentioned above), learning rate schedulers (Cosine
Annealing, Constant, ReduceOnPleateau) and optimizer momentum and find none of these hyperparameters to be significant.
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